Minggu, 20 Februari 2011

4 tak dan diesel

SIKLUS OTTO 4 TAK DAN SIKLUS MESIN DIESEL





Siklus otto 4 tak

1. Langkah Hisap ( Induction Stroke )
Pada langkah hisap, klep inlet membuka sebelum TMA, setelah itu tetap terbuka sampai pison melewati TMB, mengapa harus tetap terbuka sampai melewati TMB? alasannya adalah untuk membiarkan inertia dari tingginya kecepatan bahan bakar dan udara yang tadi dihisap ke dalam silinder untuk benar-benar memadatkan campuran bahan bakar dan udara yang mana saat itu piston mulai naik untuk memulai langkah kompresi.



2. Langkah Kompresi ( Compression Stroke )
Setelah Piston melewati TMB, maka klep Inlet menutup. saat itulah langkah kompresi dimulai. jadi langkah kompresi dimulai bukan dari TMB, melainkan setelah melewati TMB. gerakan piston menuju ke TMA menekan campuran bahan bakar dan udara yang tadi dihisap ke dalam silinder.
3. Langkah Usaha ( Power )
sebelum piston mencapai TMA, busi memercikkan api dan terciptalah ledakan pembakaran. namun gerakan piston masih menuju ke TMA, lalu setelah mencapai TMA baru turun TMB karena tingginya tekanan ledakan dari proses pembakaran. jadi pembakaran tercipta sebelum piston mencapai TMA dan kemudian naik baru ke TMB, hal ini bertujuan untuk menciptakan tekanan pembakaran yang tinggi. dari langkah ini bisa kita lihat kalau langkah kompresi sendiri tidak mencapai 180 derajad ( gerakan piston dari TMA - TMB adalah 180 derajad ). karena klep in menutup setelah TMB dan sebelum piston mencapai TMA busi sudah memercikkan api.
4. Langkah Buang ( Exhaust Stroke )
Klep buang membuka lama sebelum piston mencapai TMB. membukanya klep buang sebelum TMB tujuannya untuk membiarkan tekanan di dalam silinder berkurang, sehingga pada saat setelah piston melewati TMB, momentum dari gas pembuangan digunakan untuk membilas silinder secara efisien. karena pada saat itu juga klep inlet membuka sebelum TMA ( periode ini disebut overlapping atau kedua klep membuka secara bersamaan ) dan klep buang menutup setelah melewati TMB. pada saat itu inertia dari gas sisa pembakaran benar-benar membantu pengisian silinder dengan membuat sebagian kevakuman di dalam silinder dan jalur pemasukan. karena pada saat itu klep in sudah terbuka dan memulai langkah pengisian.
Siklus Dasar Mesin Diesel
Sebuah mesin diesel adalah jenis mesin termal yang menggunakan proses pembakaran internal (internal combustion engine) untuk mengubah energi yang tersimpan dalam ikatan kimia dari bahan bakar menjadi energi mekanik berdaya guna.
Ini terjadi dalam dua langkah:
Pertama, bahan bakar akan bereaksi secara kimia atau pembakaran dan melepaskan energi dalam bentuk panas.
Kedua panas menyebabkan gas yang terperangkap dalam silinder memuai dan pemuaian gas dibatasi oleh silinder menyebabkan piston bergerak memperluas ruang silinder.
Gerakan bolak-balik (reciprocating) piston ini kemudian diubah menjadi gerak rotasi oleh poros engkol (crank shaft, kruk as). Untuk mengkonversi energi kimia bahan bakar menjadi energi mekanik berdaya guna semua pembakaran internal mesin harus melalui empat kegiatan: isap, kompresi, usaha dan buang. Bagaimana peristiwa tersebut dihitung dan bagaimana mereka terjadi membedakan berbagai jenis mesin.
Semua mesin diesel masuk ke dalam salah satu dari dua kategori, mesin siklus dua langkah atau 2 tak atau mesin siklus empat langka atau 4 tak. Siklus mengacu pada setiap operasi atau rangkaian kejadian yang berulang. Dalam kasus mesin 4 tak, mesin memerlukan empat langkah piston (isap, kompresi, usaha dan buang) untuk menyelesaikan satu siklus penuh. Oleh karena itu, diperlukan dua putaran dari poros engkol atau 720° dari rotasi poros engkol (360° x 2) untuk menyelesaikan satu siklus. Dalam mesin 2 tak peristiwa isap, kompresi, usaha dan buang terjadi dalam satu putaran poros engkol atau 360°.
Timing
Dalam pembahasan berikut dari siklus diesel adalah penting untuk mengingat kerangka waktu di mana setiap tingkah laku yang diperlukan terjadi. Waktu yang diperlukan untuk gerak pembuangan gas sisa keluar dari silinder dan udara segar ke dalam silinder, kompres udara, menginjeksikan bahan bakar dan untuk membakar bahan bakar.
Jika mesin diesel 4 tak berjalan konstan pada 1.500 putaran per menit (rpm), poros mesin akan berputar 25 putaran tiap detik atau 9.000 derajat per detik. Satu langkah selesai dalam waktu sekitar 0,02 detik.
Siklus 4 Langkah
Dalam mesin 4 tak, camshaft (noken as) disesuaikan sehingga kecepatan putarnya hanya setengah dari kecepatan putar poros engkol atau 1 putaran camshaft berbanding 2 putaran crankshaft. Ini artinya bahwa poros engkol harus membuat dua putaran lengkap sebelum noken as menyelesaikan satu putaran.
Bagian berikut akan menggambarkan empat langkah, mesin diesel memiliki katup isap dan katup buang dengan 3.5 inchi boring dan 4 inchi langkah dengan rasio kompresi 16:1, saat melewati satu siklus. Kita akan mulai pada langkah isap. Semua tanda waktu yang diberikan adalah secara umum dan akan bervariasi dari mesin ke mesin.

Ketika piston bergerak ke atas mendekati 28° sebelum TMA yang diukur dengan perputaran poros engkol (crankshaft), cuping (nok) camshaft mulai mengangkat cam follower. Hal ini menyebabkan batang pendorong (pushrod) bergerak keatas dan mendorong sumbu pengungkit pelatuk (rockrer arm), pelatuk kemudian mendorong katup isap (intake valve) ke bawah dan katup (valve,klep) mulai terbuka. Langkah isap kini mulai sementara katup buang masih terbuka. Aliran gas buang membuat kondisi tekanan rendah di dalam silinder dan akan membantu menarik muatan udara segar masuk kedalam silinder seperti yang ditunjukkan pada Gbr. 1.
Piston melanjutkan perjalanan ke atas sampai TMA, sementara udara segar masuk dan gas buang keluar. Sekitar 12° setelah TMA, cuping pembuangan camshaft berputar sehingga katup buang akan mulai menutup. Katup akan sepenuhnya ditutup sekitar 23° setelah TMA. Hal ini dicapai berkat pegas katup yang tertekan ketika katup dibuka, memaksa rocker arm dan cam follower kembali lagi sesuai dengan perputaran cuping camshaft. Dalam kerangka waktu selama kedua katup isap dan katup buang terbuka disebut katup saling tumpang tindih atau valve overlap (dalam contoh ini 51° overlap) dan digunakan untuk memungkinkan udara segar membantu memindahkan gas buang keluar dan mendinginkan silinder atau pembilasan. Pada kebanyakan mesin, 30 sampai 50 kali volume silinder, udara pembilasan melalui silinder selama overlap.
Udara segar yang kelebihan ini juga memberikan efek pendinginan yang diperlukan pada bagian-bagian mesin. Ketika piston melewati TMA dan mulai melakukan perjalanan menuruni lubang silinder, gerakan piston ini membuat sebuah langkah pengisapan dan terus menarik udara segar masuk ke dalam silinder.

Pada 35° setelah titik mati bawah (TMB), katup isap mulai tertutup. Pada 43° setelah TMB atau 137° sebelum TMA, katup isap intake pada kedudukannya dan sepenuhnya tertutup. Di titik ini muatan udara pada tekanan normal sekitar 14,7 psi atm dan suhu udara ambien berkisar ~80°F, seperti diperlihatkan pada Gbr.2 Sekitar 70° sebelum TMA, piston telah menempuh perjalanan sekitar 2,125 inchi atau sekitar setengah dari ruang langkah kerja silinder, sehingga mengurangi setengah volume silinder. Suhu dua kali lipatnya menjadi berkisar ~160°F dan tekanan sekitar ~34 psi atm.
Sekitar 43° sebelum TMA piston telah melakukan perjalanan 3,062 inchi keatas dan volume sekali lagi dibagi dua. Akibatnya, suhu naik dua kali lipat menjadi sekitar ~320°F dan tekanan ~85 psi atm. Ketika piston telah mencapai 3,530 inchi dari ruang langkah kerja silinder, volume silinder dibagi dua lagi dan suhu mencapai sekitar 640°F dan tekanan 277 psi atm. Ketika piston telah mencapai 3,757 inci dari ruang langkah kerja silinder, volume dibagi dua dan suhu meningkat sampai 1280°F dan tekanan mencapai 742 psi atm. Dengan luas piston 9,616 inchi kuadrat maka tekanan dalam silinder mengerahkan kekuatan sekitar 7.135 lb atau 3,5 ton gaya tekan.
Hitungan di atas untuk mesin ideal dan memberikan contoh yang baik dari apa yang terjadi di dalam mesin selama kompresi. Dalam sebuah mesin yang sebenarnya, tekanan hanya mencapai sekitar 690 psi atm. Hal ini terutama disebabkan hilangnya panas ke bagian mesin sekitarnya.
Injeksi bahan bakar (Fuel Injection)
Bahan bakar dalam keadaan cair diinjeksikan ke dalam silinder pada waktu dan perkiraan yang tepat untuk memastikan bahwa tekanan pembakaran pada piston di paksa tidak terlalu dini atau terlalu terlambat, seperti yang ditunjukkan pada Gbr.3. Bahan bakar memasuki silinder dimana panas udara yang dimampatkan telah ada, namun bahan bakar hanya akan terbakar ketika berada dalam keadaan menguap, hal tersebut tercapai melalui penambahan panas dan dicampur dengan pasokan oksigen. Tetesan menit pertama pemasukan bahan bakar ke ruang bakar dengan cepat menguap. Penguapan dari bahan bakar menyebabkan udara disekitar bahan bakar mengalami pendinginan sehingga udara membutuhkan waktu untuk mendapatkan panas yang cukup untuk menyalakan menguapan bahan bakar. Injeksi bahan bakar dimulai pada 28° sebelum TMA dan berakhir pada 3° setelah TMA, karena itu bahan bakar diinjeksikan untuk durasi dari 31°.
Usaha (Power)
Kedua katup tertutup dan muatan udara segar telah dikompresi. Bahan bakar telah disuntikkan dan mulai terbakar. Setelah piston melewati TMA, panas dengan cepat dihasilkan oleh penyalaan dari bahan bakar dan menyebabkan peningkatan tekanan pada silinder. Suhu pembakaran sekitar 2.336°C. Kenaikan gaya tekan pada piston ke bawah meningkatkan gaya puntir pada poros engkol pada langkah usaha, sebagaimana diilustrasikan pada Gbr.4. Energi yang dihasilkan oleh proses pembakaran tidak semua dimanfaatkan. Dalam mesin diesel 2 tak, hanya sekitar 38% dari daya yang dihasilkan dimanfaatkan untuk melakukan pekerjaan, sekitar 30% terbuang dalam bentuk panas dibuang melalui sistem pendingin dan sekitar 32% dalam bentuk panas ditolak keluar melalui knalpot. Sebagai perbandingan, mesin diesel 4 tak memiliki distribusi termal dari 42% dikonversi menjadi kerja yang berdaya guna, 28% panas yang dibuang melalui sistem pendinginan dan 30% panas yang dibuang keluar melalai knalpot.
Pembuangan (Exhaust)
Seraya piston mendekati 48° sebelum TMB, cuping cam pembuangan mulai memaksa cam follower keatas, menyebabkan katup buang tertekan dari kedudukannya. Seperti yang ditunjukkan pada Gbr.5, gas buang mulai mengalir keluar dari katup buang akibat tekanan silinder dan masuk ke dalam manifold pembuangan. Setelah melalui TMB, piston bergerak ke atas dan mengalami percepatan sampai kecepatan maksimum pada 63° sebelum TMA. Dari titik ini piston mengalami perlambatan. Selama kecepatan piston melambat, kecepatan gas yang mengalir keluar silinder membuat tekanan sedikit lebih rendah daripada tekanan atmosfer. Pada 28° sebelum TMA, katup isap intake terbuka dan siklus dimulai lagi.
Jelaskan Perbedaan siklus otto dan siklus diesel 2 tak ?
Mesin yang ditemukan oleh Rudolf Diesel (8158-1913) konsturksinya tidak berbeda jauh dengan mesin bensin yang dikenal dengan sebutan mesin otto.beberapa bagian komponennya punya tugas yang sama dengan mesin bensin,seperti blok slinder, poros engkol, poros bubungan, asembli torak, dan mekanisme pengerak katupnya.perbedaan motor diesel dan motor bensin adalah cara pemberian dan penyalaan bahan bakarnya; perbandingan kompressi; disain komponen.

1. Cara pemberian Dan penyalaan Bahan bakar
Perbedaan utama terletak pada bagaimana memulai sesuatu pembakaran dalam ruang silinder.mesin besin mengawali pembkaran dengan disuplainya listrik tegangan tinggi, sehingga menimbulkan percikan bunga api di antara ecelah busi untuk memulai pembakaran gas.motor diesel memanfaatkan udara yang dikompresi untuk memulai pembakaran bahan bakar solar.Dengan perbandingan kompresinya sangat tinggi sampai berkisar 22 : 1,akibatnya tekanan naik secara mendadak(berlansung dalam beberapa milidetik)suhunya dapat mencapai 900-1000 derajat celcius.Suhu setinggi itu dapat menyalakan bahan bakar solar. Menjelang akhir langkah kompresi,solar disemprotkan ke udara Yang sangat panas itu.Akibatnya, bahan bakar langsung terbakar sebab titik nyala solar sendiri Cuma 4000 Celcius.karena pembakaran terjadi akibat tekanan kompresi yang sangat tinggi tadi,maka mesi diesel di sebut juga mesin penyalaan kompresi (compression igniton engine).Sedangkan mesin bensin di kenal dengan mesin penyalaan bunga api (spark ignition engine). Dalam mesin bensin bahan bakar dan udara dicampur di luar slinder yaitu dalam karburator dan saluran masuk (manifold).Sebaliknya mesin diesel tidak ada campuran pendahuluan udara dan bahan bakar di luar slinder,hanya udara yang diterima ke dalam slinder melalui saluran masuk.

2. Perbandingan Kompresi mesin diesel dan Bensin
Perbandingan kompresi adalah perbandingan volume udara dalam silinder sebelum langkah kompresi dengan volume sesudah langkah kompresi. Perbandingan kompresi untuk motor-motor bensin adalah berkisar 8 : 1 sedangkan perbandingan yang umum untuk motor-motor diesel adalah 16-22 : 1.Perbandingan kompresi yang timggi pada motor diesel menimbulakan kenaikan suhu udara cukup tinggi untuk menyalakan bahan bakar tanpa ada letikan bunag api.Hal ini menyebabkan motor diesel mempunyai efisiensi yang besar sebab kompresi yang tinggi menghasilkan pemuaian yang besar dari gas-gas hasil pembakaran dalam slinder.Karena itu tenaganya sangat kuat. Efisiensi tinggi yang dihasilkan pembakaran motor diesel harus diimbangi dengan kekuatan komponen-komponennya agar dapat menahan gaya-gaya pembakaran yang sangat besar.

3.Disain Komponen Mesin Diesel dan Bensin
Sudah dikatakan bahwa mesin diesel haruslah dibuat kokoh dan kuat untu dapat menahan gaya pembakaran yang sangat besar.Pada umumnya bagian-bagian yang dikuatkan adalah torak,pena torak,batang penghubung,dan poros engkol serta sejumlah bantalan utama untuk mendukung poros engkol.

3). Jelaskan perbedaan langkah ICE 2 tak dan ICE 4 tak ?
Jika mesin 4 tak memerlukan 2 putaran crankshaft dalam satu siklus kerjanya, maka untuk mesin 2-tak hanya memerlukan satu putaran saja. Hal ini berarti dalam satu siklus kerja 2 tak hanya terdiri dari 1 kali gerakan naik dan 1 gerakan turun dari piston saja. Desain dari ruang bakar mesin 2 tak memungkinkan terjadunya hal semacam itu. Ketika piston naik menuju TMA untuk melakukan kompresi maka katup hisap terbuka ( lihat gambar di bawah) dan masuklah campuran bahan bakar dan udara, sehingga dalam satu gerakan piston dari TMB ke TMA menjalankan dua langkah sekaligus yaitu kompresi dan isap. Pada saat sesaat sebelum piston mencapai TMA maka busi menyala, gas campuran meledak dan memaksa piston kembali bergerak ke bawah menuju TMB. Gerakan piston yang ini disebut langkah ekspansi. Namun sembari piston melakukan langkah ekspansi atau usaha, sesungguhnya juga melakukan langkah buang melalui katup buang (sisi kanan dinding silinder pada gambar) . Hal ini bisa terjadi karena gas hasil pembakaran terdorong keluar akibat campuran bahan bakar dan udara baru yang juga masuk dari sisi kiri dinding silinder.
Jadi, kenapa motor dengan mesin 2 tak harus memakai oli pelumas samping selain pelumas mesin sudah jelas, karena model kerja yang seperti itu membuat tenaga yang dihasilkan lebih besar. Perbandingannya pada mesin 4 tak dalam 2 kali putaran crankcase = 1 x kerja sedangkan untuk 2 tak 2 kali putaran crankcase = 2 x kerja.
Untuk itu, dibutuhkan pelumas yang lebih karena putaran yang dihasilkan lebih cepat. Hal itu juga menjawab kenapa mesin 2 tak lebih berisik ,boros bahan bakar, menghasilkan asap putih dari knalpotnya tetapi unggul dalam kecepatan dibandingkan mesin 4 tak. Istilahnya “No Engine is Perfect !” Perbedaan yang lain juga terdapat pada bentuk fisik pistonnya. Piston 2 tak lebih panjang dibanding piston 4 tak. Selain itu bentuk piston head nya juga lain, piston 2 tak memiliki semacam kubah untuk memuluskan gas buang untuk bisa keluar sedangkan 4 tak tidak. Piston 2 tak juga memiliki slot lubang yang berhubungan dengan reed valve yang berhubungan dengan cara kerja masukan campuran bahan bakar – udara ke ruang bakar.

mesin 2 tak dan 4 tak

Mesin 2 langkah Vs 4 langkah

Mesin 2 langkah Vs 4 langkah
Mesin 2 Langkah (2 Tak)
 
Mesin 2 langkah / 2 Tak pertama kali dibuat oleh Dugald Clerk pada tahun 1877. Mesin ini dapat bekerja dalam siklus Otto ataupun siklus Diesel, bergantung kepada aplikasinya. Penggunaan yang umum dari mesin 2 Tak adalah mesin dengan cc kecil seperti gergaji mesin, mesin potong rumput, sepeda motor dan bahkan mobil berukuran kecil.
Dasar Mesin 2 Langkah


Berikut merupakan skema mesin 2 langkah :
 


Sementara itu bagian-bagian yang utama dari sebuah mesin 2 langkah adalah sebagai berikut :
Cara Kerja Mesin 2 Langkah
Secara umum cara kerja mesin 2 langkah terbagi menjadi 2 macam, yaitu langkah penghisapan dan pembuangan, serta langkah kompresi dan pembakaran.
 
1. Langkah penghisapan dan pembuangan
a) Torak bergerak dari TMA ke TMB.
b) Pada saat saluran bilas masih tertutup oleh torak, di dalam bak engkol terjadi kompresi terhadap campuran bensin dan udara.
c) Diatas torak, gas sisa pembakaran dari hasil pembakaran sebelumnya sudah mulai terbuang keluar melalui saluran buang.
d) Saat saluran bilas sudah terbuka, campuran bensin dengan udara mengalir melalui saluran, dan saluran bilas terus masuk ke dalam ruang bakar.
 
2. Langkah kompresi dan pembakaran
a) Torak bergerak dari TMB ke TMA.
b) Saluran bilas dan buang tertutup, terjadi langkah kompresi, dan setelah mencapi tekanan tinggi busi memercikan bunga api listrik untuk membakar campuran bensin dengan udara tadi
c) Pada sat yang bersamaan juga dibawah ( didalam bak engkol mesin ) bahan bakar yang baru masuk ke dalam bak mesin melalui saluran masuk.
 


Untuk sistem pembilasan (Scavenging) mesin 2 langkah dikenal beberapa metode yaitu sebagai berikut :
 
Diantara metode pembilasan diatas, Schnurle Loop Scavenging adalah yang paling umum digunakan termasuk untuk mesin sepeda motor 2 langkah yang umum dipakai.
 
Keunggulan
1. Konstruksi Sederhana ; pada mesin 2 langkah umumnya tidak digunakan mekanisme katup sehingga jumlah komponen yang bergerak pun menjadi lebih sedikit. Ini membuat dimensi mesin menjadi lebih kecil, serta bobotnya lebih ringan. Selain itu proses perawatannya pun menjadi lebih mudah.
2. Fleksibilitas Orientasi Posisi ; karena sistem pelumasan mesin 2 langkah tercampur langsung dengan bahan bakar, maka perubahan posisi mesin tidak akan mempengaruhi efisiensi pelumasan. Ini adalah alasan mengapa gergaji mesin menggunakan mesin jenis ini.
3. Produksi Daya Lebih Besar ; untuk kapasitas mesin yang sama, mesin 2 langkah dapat memproduksi daya yang lebih besar dibanding 4 langkah. Tidak seperti 4 langkah yang melakukan pembakaran setiap 2 kali perputaran Crankshaft/poros engkol, pembakaran mesin 2 langkah terjadi pada setiap 1 kali perputaran poros engkol. Jumlah pembakaran yang lebih banyak inilah yang membuat daya yang dihasilkan lebih besar, namun juga membuat konsumsi bahan bakarnya menjadi lebih boros.
 
Mesin 4 Langkah (4 Tak)
 
Mesin putaran empat langkah atau (Putaran Otto) dari sebuah mesin pembakaran dalam adalah putaran yang sering digunakan untuk otomotif dan industri sekarang ini. Mesin jenis ini banyak digunakan untuk menggerakkan mobil, truk, generator, hingga sepeda motor. Selain irit dan bertenaga, mesin ini juga dikenal ramah lingkungan karena pembakarannya lebih sempurna dibanding dengan jenis mesin lainnya.
Mesin empat langkah pertama kali dikembangkan oleh teknisi Perancis, Alphonse Beau de Rochas pada 1862 dan teknisi Jerman Nikolaus Otto pada 1876 secara terpisah. Putaran empat langkah lebih irit dan pembakarannya lebih bersih dari putaran dua langkah, tetapi membutuhkan lebih banyak bagian yang bergerak dan keahlian pembuatan. Jenis mesin ini juga lebih mudah dibuat dalam konfigurasi multi-silinder dari dua langkah. Hal ini menjadikannya sangat berguna dalam aplikasi tenaga besar seperti mobil atau kendaaran besar lainnya. Kemudian, dikembangkan juga mesin Wankel yang sama-sama memiliki empat langkah yang serupa hanya saja mesin ini merupakan mesin pembakaran berputar dan bukan mesin berulang seperti putaran empat langkah.
Putaran Otto dikarakterisasikan oleh empat langkah, atau gerakan lurus bergantian, maju dan mundur, dari sebuah piston di dalam silinder:
1.    Intake (induction) stroke
2.    Compression stroke
3.    Power (combustion) stroke
4.    Exhaust stroke
Putaran 4 langkah (atau putaran Otto) dimulai pada top dead center, ketika piston berada pada titik paling atas. Pada saat stroke pertama (pengambilan) piston, sebuah campuran bahan bakar dan udara ditarik ke dalam silinder melalui lubang intake. Valve lubang intake kemudian tertutup, dan kemudian stroke ke atas (kompresi) mengkompres campuran bensin-udara.
Campuran bensin-udara kemudian dinyalakan, biasanya oleh sebuah busi untuk mesin bensin atau putaran Otto, atau dengan panas dan tekanan dari kompresi untuk putaran Diesel dari mesin penyala kompresi, pada saat stroke kompresi berada di atas. Akibat dari pengembangan dari pembakaran gas kemudian mendorong piston ke bawah untuk stroke ke-3 (tenaga), dan kemudian pada stroke ke atas yang ke-4 dan terakhir (pembuangan) mengeluarkan gas sisa pembakaran dari silinder melalui valve pembuangan yang terbuka, melalui lubang pembuangan.
Cara Kerja Mesin 4 Langkah
 
  1. Langkah hisap. Piston bergerak ke bawah (gambar 1), katup hisap terbuka dan katup buang menutup. Campuran udara dan bahan bakar dihisap masuk (melalui katup hisap).
Disebut langkah intake karena langkah pertama adalah menghisap melalui piston dari karburator. Pasokan bahan bakar tidak cukup hanya dari semprotan karburator. Cara kerjanya adalah sbb. Piston pertama kali berada di posisi atas (atau disebut Titik Mati Atas). Lalu piston menghisap bahan bakar yang sudah disetting/dicampur antara bensin dan udara di karburator. Piston lalu mundur menghisap bahan bakar. Untuk membuka, diperlukan klep atau valve inlet yang akan membuka pada saat piston turun/menghisap ke arah bawah.
 
Gerakan valve atau inlet diatur oleh camshaft secara mekanis. Yakni, camshaft mengatur besaran bukaan klep dengan cara menekan tuas klep. Camshaft sendiri digerakan oleh rantai keteng yang disambungkan antara camshaft ke crankshaft.

  1. Langkah kompresi. Piston bergerak ke atas kedua katup menutup. Udara dan bahan bakar dimampatkan.

    Setelah piston mencapai titik terbawah di tahapan intake, lalu valve intake tertutup, dan dilakukan proses kompresi. Yakni, bahan bakar yang sudah ada di ruang bakar dimampatkan. Ruangan sudah tertutup rapat karena kedua valve (intake dan exhaust) tertutup. Proses ini terus berjalan sampai langkah berikut yakni “meledak”-nya busi di langkah ke 3.


    1. Langkah pembakaran. Sesaat sebelum piston mencapai puncak, busi memercikkan bunga api dan membakar campuran oksigen dan udara. Tekanan meningkat dan mendorong piston
       


      ke bawah (kedua katup menutup). Daya mekanik inilah yang dimanfaatkan untuk menggerakan mesin.
    Tahap ini adalah busi pada titik tertentu akan “meledak” setelah piston bergerak mencapai titik mati atas dan mundur beberapa derajat. Jadi, busi tidak meledak pada saat piston di titik paling atas (disebut titik 0 derajat), tetapi piston mundur dulu, baru meledak. Hal ini karena untuk menghindari adanya energi yang terbuang sia-sia karena pada saat piston di titik mati atas, masih ada energi laten (yang tersimpan akibat dorongan proses kompresi). Jika pada titik 0 derajat busi meledak, bisa jadi piston mundur tetapi mengengkol crankshaft ke arah belakang (motor mundur ke belakang, bukan memutar roda ke depan).
    Setelah proses pembakaran, maka piston memiliki energi untuk mendorong crankshaft yang nantinya akan dialirkan melalui gearbox dan sproket, rantai, dan terakhir ke roda.
     
    1. Langkah buang. Setelah piston mencapai akhir dari langkah, katup buang membuka piston bergerak keatas mendorong sisa pembakaran keluar menuju knalpot.
    Langkah terakhir ini dilakukan setelah pembakaran. Piston akibat pembakaran akan terdorong hingga ke titik yang paling bawah, atau disebut Titik Mati Bawah. Setelah itu, piston akan mendorong ke depan dan klep exhaust membuka sementara klep intake tertutup. Oleh karena itu, maka gas buang akan terdorong masuk ke lubang Exhaust Port (atau kita bilang lubang sambungan ke knalpot). Dengan demikian, maka kita bisa membuang semua sisa gas buang akibat pembakaran. Setelah bersih kembali, akan masuk lagi mengulangi langkah ke-1.
    Siklus tersebut terus berulang (piston bergerak ke atas dan ke bawah). Gerakan piston ke atas dan ke bawah ini dimanfaatkan dengan cara merubahnya menjadi gerakan memutar dan dihubungkan ke gear box.
     
    Komponen-komponen mesin 4 langkah antara lain:
    • Busi; berfungsi untuk memercikkan api,
    • Katup; berfungsi untuk menutup menutup lubang silinder,
    • Piston; berfungsi untuk mengatur volume ruang pembakaran,
    • Batang penghubung; berfungsi untuk menghubungkan piston dengan crankshaft,
    • Crankshaft; merubah gerakan naik turun piston (vertikal) menjadi gerakan memutar.
     
    Keunggulan
    Beberapa keunggulan mesin 4 langkah dibandingkan mesin 2 langkah antara lain :
    1. Konsumsi bahan bakar lebih irit.
    2. Asap pembuangan lebih ramah lingkungan.
    3. Walaupun lebih banyak bagian yang bergerak, mesin 4 langkah tetap dikategorikan cukup bertenaga.
    4. Dengan konfigurasi multi-silinder, mesin 4 langkah lebih mudah dibuat dan menjadikannya sangat berguna dalam aplikasi tenaga besar seperti mobil atau kendaraan besar lainnya.
     
    Kesimpulan
    ·         Pada mesin 2 tak, dua kali langkah piston terjadi satu kali proses pembakaran. Sedangkan di 4 tak, 4 kali langkah piston terjadi satu kali proses pembakaran.
    ·         Dengan kapasitas mesin yang sama tenaga mesin 2 tak lebih besar. Tetapi juga lebih boros karena pembakaran yang terjadi tidak se-sempurna di 4 tak.
    ·         Pada mesin 4 tak terdapat klep masuk dan klep keluar. Juga terdapat rantai timing untuk mengatur derajat pengapian.
    ·         Pada mesin 4 tak, oli ikut melumasi mesin sehingga oli menjadi hitam dan jangka waktu ganti oli mesinnya lebih cepat.
    ·         Pada mesin 2 tak, oli mesin hanya melumasi transmisi sehingga tidak menjadi hitam dan jangka waktu ganti olinya lebih lama. Maka di mesin 2 tak terdapat oli samping untuk melumasi mesin.
    ·         Dengan adanya oli samping pada mesin 2 tak, maka pembuangan (knalpot) mengeluarkan asap dan tidak ramah lingkungan. Sedangkan mesin 4 tak tanpa oli samping dan pembuangan tidak mengeluarkan asap, menjadikannya lebih ramah lingkungan.
    Popularity: 70% [?]

    alat ukur tegangan

    Fungsi & Pengertian Amperemeter, Voltmeter, Ohmmeter Alat Ukur Listrik - Ilmu Fisika

    Seorang teknisi elektronik biasanya memiliki alat pengukur wajib yang mereka gunakan untuk berbagai keperluan teknis yaitu avometer yang merupakan gabungan dari fungsi alat ukur amperemeter untuk mengukur ampere (kuat arus listrik), voltmeter untuk mengukur volt (besar tegangan listrik) dan ohmmeter untuk mengukur ohm (hambatan listrik).
    Mari kita lihat arti definisi dan fungsi masing-masing alat :
    A. Amperemeter / Ampere Meter
    Amperemeter adalah alat yang digunakan untuk mengukur kuat arus listrik. Umumnya alat ini dipakai oleh teknisi elektronik dalam alat multi tester listrik yang disebut avometer gabungan dari fungsi amperemeter, voltmeter dan ohmmeter.
    Amper meter dapat dibuat atas susunan mikroamperemeter dan shunt yang berfungsi untuk deteksi arus pada rangkaian baik arus yang kecil, sedangkan untuk arus yang besar ditambhan dengan hambatan shunt.
    Amperemeter bekerja sesuai dengan gaya lorentz gaya magnetis. Arus yang mengalir pada kumparan yang selimuti medan magnet akan menimbulkan gaya lorentz yang dapat menggerakkan jarum amperemeter. Semakin besar arus yang mengalir maka semakin besar pula simpangannya.
    B. Voltmeter / Volt Meter
    Voltmeter adalah suatu alat yang berfungsi untuk mengukur tegangan listrik. Dengan ditambah alat multiplier akan dapat meningkatkan kemampuan pengukuran alat voltmeter berkali-kali lipat.
    Gaya magnetik akan timbul dari interaksi antar medan magnet dan kuat arus. Gaya magnetic tersebut akan mampu membuat jarum alat pengukur voltmeter bergerak saat ada arus listrik. Semakin besar arus listrik yang mengelir maka semakin besar penyimpangan jarum yang terjadi.
    C. Ohmmeter / Ohm Meter
    Ohm meter adalah alat yang digunakan untuk mengukur hambatan listrik yang merupakan suatu daya yang mampu menahan aliran listrik pada konduktor. Alat tersebut menggunakan galvanometer untuk melihat besarnya arus listrik yang kemudian dikalibrasi ke satuan ohm.

    Minggu, 13 Februari 2011

    artikel otomotif 2

    Fungsi dasar
    Sama seperti mesin bensin konvensional, motor diesel mesin pembakaran internal yang mengubah bahan bakar untuk energi mekanik yang dapat bergerak piston naik dan turun di dalam mesin. Piston yang terhubung ke poros mesin yang mengubah gerakan linear piston menjadi sebuah rotasi yang mendorong kendaraan roda. Kedua jenis mesin memerlukan sedikit ledakan (pembakaran) dari campuran bahan bakar dan di luar oksigen untuk melepaskan energi yang dibutuhkan untuk menggerakkan mobil ke depan.
    Perbedaan antara Diesel dan Motor Bensin
    Perbedaan utama antara kedua jenis mesin adalah proses melalui mana pembakaran internal ini terjadi. Mesin konvensional memerlukan busi sebagai sarana untuk membakar bahan bakar. Mesin diesel menggunakan suhu yang lebih tinggi untuk menciptakan udara yang lebih tinggi kompresi yang menyebabkan bahan bakar untuk membakar dengan sendirinya tanpa bantuan busi.
    Cara Kerja
    Gas memanas saat dikompresi, dan ini adalah prinsip mesin diesel mengandalkan dalam penggunaan energi. Pada langkah pertama dari proses, mesin diesel membawa udara ke dalam silinder ketika piston bergerak pergi ke ruang yang jelas untuk itu. Ketika piston kembali ke katup intake, itu memampatkan udara itu hanya dibawa masuk dan memanaskan itu pada waktu yang sama. Bahan bakar kemudian disuntikkan di bawah tekanan tinggi serta piston mencapai akhir dari kompresi. Suhu tinggi membakar udara bahan bakar, yang menyebabkan gas dalam ruang untuk secara cepat memperluas dan memaksa piston kembali. Ketika itu datang kembali, ia mendorong digunakan gas keluar dari silinder dan intake napas lagi udara segar untuk mengulangi proses lagi.

    Keuntungan dan Kerugian

    Mesin diesel bisa jauh lebih kuat daripada mesin bensin konvensional, itulah sebabnya mengapa mesin diesel digunakan untuk kendaraan besar seperti semi-truk. Mesin diesel bisa sangat efisien bahan bakar ketika menjalankan dengan benar, sampai 15% lebih efisien dibandingkan mesin bensin biasa. Bahan bakar diesel dapat mulai untuk membekukan dalam mesin dalam cuaca dingin dan mengarah pada suatu kondisi yang disebut “waxing” di mana ia mulai membentuk kristal dalam mesin dan saluran bahan bakar. Karena mesin diesel sangat bergantung pada panas dan kompresi untuk menghasilkan kekuasaan mereka, mereka dapat menjadi sulit untuk memulai dalam cuaca dingin. Pemanas telah dibangun ke mereka dalam beberapa tahun terakhir untuk membantu memecahkan masalah ini, dan bahan bakar aditif dapat membantu mencegah waxing. Salah satu serangan terbesar terhadap penggunaan mesin diesel tetap jumlah yang lebih besar emisi itu menciptakan selama operasi, terutama nitrogen oksida dan emisi hidrokarbon terbakar.



    Source: http://islam-download.net/cara-mudah-cepat/cara-kerja-mesin-diesel.html#ixzz06x6d03ve

    artikel otomotif 1

    Senin, 17 Mei 2010

    TROUBLESHOOTING MEGAPRO Kopling yang tidak bekerja dengan baik biasanya dapat diperbaiki dengan menyetel jarak main bebas kopling. Handel kopling terlalu berat • Kabel kopling rusak, tertekuk atau kotor • Peralatan pengungkit kopling rusak • Bantalan plat pengungkit kopling rusak Kopling slip pada saat akselerasi • Tidak ada jarak main bebas handel kopling • Kanvas-kanvas kopling aus • Pegas-pegas kopling lemah • Pengungkit kopling tertahan Kopling tidak mau terlepas atau kendaraan merayap dengan kopling dalam keadaan tertarik • Terlalu banyak jarak main bebas handel kopling • Plat kopling bengkok • Pengungkit kopling rusak • Permukaan oli terlalu tinggi atau viskositas oli tidak tepat Kerja kopling terasa kasar • Alur-alur bagian luar kopling (clutch outer) kasar Pengoperasian gigi sulit/keras • Penyetelan kopling tidak benar • Poros spindle pemindah gigi transmisi bengkok • Bubungan pemindah gigi transmisi rusak • Plat pemindah gigi transmisi rusak atau bengkok Transmisi meloncat keluar dari gigi yang dipilih • Pegas pembalik lengan stopper rusak atau aus • Lengan stopper rusak • Bubungan pemindah gigi transmisi rusak atau aus Pedal pemindah gigi transmisi tidak mau kembali • Pegas pembalik poros spindle pegas pembalik pemindah gigi transmisi rusak atau aus • Poros spindle pemindah gigi transmisi bengkok Suara mesin berlebihan • Bantalan kepala besar batang penggerak aus • Bantalan poros engkol aus • Bantalan transmisi aus Transmisi melompat keluar dari gigi yang dipilih • Garpu-garpu pemindah gigi aus atau bengkok • Poros garpu pemindah gigi bengkok • Alur-alur tromol pemindah gigi aus atau rusak • Lengan stopper pemindah gigi rusak • Pegas lengan stopper tromol rusak • Pegas pembalik poros pemindah gigi rusak. Gigi sukar dipindahkan • Penyetelan kopling tidak benar • Viskositas oli mesin tidak benar • Garpu pemindah gigi bengkok • Poros garpu pemindah gigi bengkok • Cakar garpu pemindah gigi bengkok • Alur-alur tromol pemindah gigi rusak • Poros spindle pemindah gigi bengkok Kemudi terasa berat • Mur penyetelan bantalan kepala kemudi terlalu kencang • Bantalan kepala kemudi aus atau rusak • Poros kemudi bengkok • Tekanan udara ban terlalu rendah Kemudi tertarik ke satu arah atau tidak bisa lurus • Bantalan-bantalan kepala kemudi longgar atau rusak • Garpu-garpu depan bengkok • Poros depan bengkok • Roda tidak dipasang dengan benar • Rangka bengkok • Bantalan roda aus atau rusak • Bos-bos engsel lengan ayun aus atau rusak Roda depan goyang • Pelek bengkok • Bantalan roda depan aus atau rusak • Ban depan tidak dalam keadaan baik • Jari-jari longgar atau patah • Roda dan ban depan tidak seimbang Roda depan berputar tidak lancar • Bantalan roda depan rusak • Poros roda depan bengkok • Rem depan menyangkut Suspensi terlalu empuk • Jumlah minyak di dalam garpu tidak cukup • Pegas garpu lemah • Viskositas minyak garpu depan tidak benar • Tekanan udara ban terlalu rendah Suspensi terlalu keras • Pipa garpu bengkok • Terlalu banyak minyak dalam garpu • Viskositas minyak garpu tidak benar • Saluran minyak di dalam garpu tersumbat Suspensi depan berisik • Bos selongsong garpu depan rusak • Minyak di dalam garpu tidak cukup • Pengencang garpu dalam keadaan longgar • Gemuk di dalam gir speedometer tidak cukup Suspensi terlalu empuk • Pegas sokbreker lemah • Kebocoran oli dari peredam kejut Suspensi terlalu keras • Bos engsel lengan ayun rusak • Tangkai peredam kejut sokbreker bengkok • Bos-bos engsel lengan ayun kurang dilumasi Roda belakang bergoyang • Pelek bengkok • Bantalan roda belakang aus atau rusak • Ban dalam keadaan tidak baik • Bos engsel lengan ayun aus atau rusak • Penyetel rantai roda tidak disetel dengan seimbang Roda berputar tidak lancar • Penyetelan rem tidak benar • Bantalan roda belakang rusak • Rantai roda terlalu kencang Suspensi mengeluarkan suara • Pengencang-pengencang suspensi belakang longgar • Bos engsel suspensi belakang aus Daya pengereman lemah • Penyetelan rem kurang tepat • Kanvas rem aus • Bubungan rem aus • Pemasangan kanvas rem tidak benar • Sepatu rem dan tromol dalam keadaan kotor • Sepatu rem dalam keadaan aus pada bidang kontak dengan bubungan Rem menderit • Kanvas rem dalam keadaan aus • Tromol rem dalam keadaan aus • Kanvas rem kotor • Tromol rem kotor

    Rabu, 18 November 2009

    Job Sheet XI MO1,XI MO2

    Bahan dan peralatan : 1. Kunci set nosel injeksi 2. Tester nosel injeksi 3. nosel injeksi 4. shim penyetel Langkah kerja Mengetes Tekanan Injeksi: Mengetes Tekanan Injeksi 1.Pompakan handle tester beberapa kali dengan tujuan untuk menyemprotkan solar dari nosel fitting dan kemudian keraskan fitting 2.Pasang nosel injeksi pada tester nosel injeksi dan keluarkan udara dari mur union. 3.Pompakan handle tester beberapa kali secepat mungkin untuk membersihkan carbon dari lubang injeksi 4.Pompakan handle tester perlahan-lahan sambil mengamati prssure gauge. 5.Baca pressure gauge saat tekanan injeksi mulai turun Tekanan membuka : Nosel baru : ................ kg/cm2 Nosel lama : ................ kg/cm2 Nosel bekerja dengan sempurna apabila mengeluarkan suara mendesis dan apabila tekanan membukanya tidak sesuai spesifikasi bongkar penahan nosel ganti shim penyetel pada bagian atas pegas penekan Penyetelan tekanan membuka (opening pressure) : ....... kg/cm2 6.Ada bermacam-macam shim penyetel setiap ketebalan 0,025 mm akan merubah tekan penginjeksian kira-kira ........... kg/cm2 dan hanya satu shim penyetel yang harus digunakan 7.Harus tidak terdapat tetesan setelah penginjeksian 8.Mengetes bentuk semprotan a.Pompa handle tester 15 sampai 60 kali (nosel model lama) atau 30 sampai 60 kali (nosel model baru) permenit b.Periksa bentuk semprotan, bila bentuk semprotannya tidak benar selama penyemprotan maka nosel harus diganti atau di bersihkan

    Senin, 16 November 2009

    HONDA Target Juara Musim ini

    VALENCIA - Performa Honda pada musim lalu memang tidak mengecewakan. Kendati demikian, kubu pabrikan asal Jepang itu menargetkan gelar juara pada MotoGP 2010. Mampukah? Ya, Honda memang sempat mendominasi MotoGP di 500cc. Namun, dominasi itu luntur sejak naik kelas menjadi 800cc. Musim 2009. Honda mencatat prestasi terbaik yakni tiga kemenangan beruntun. Dani Pedrosa mencatat prestasi terbaik buat Repsol Honda. Pembalap asal Spanyol tersebut hanya mampu mampu meraih 72 poin dan berada di urutan ketiga klasemen pembalap. Praktis, hasil itu membuat tim desin staf motor HRC harus bekerja keras selama musim dingin ini. Apalagi, tim manajer HRC Kazuhiko Yamano menegaskan bahwa dirinya ingin melihat timnya meraih gelar juara 2010. "Untuk kami, hasil pada akhir musim 2009 tidak membuat kami berhenti melanjutkan pekerjaan mengembangkan motor buat pembalap kami," demikian penjelasan Yamano dikutip Crash, Kamis (12/11/2009). "Malah kebalikannya, kami akan menggandakan usaha kami selama musim dingin ini untuk menciptakan sebuah mesin buat pembalap kami supaya bisa bertarung memperebutkan gelar juara MotoGP 2010," tegasnya. "Ini adalah satu-satunya target kami, tidak ada target yang lain. Kami memang mengakhiri kompetisi musim ini dengan menjadi juara dan kami akan tampil semakin kuat musim depan," tandasnya. Honda memang sudah melalui ujicoba di Valencia selama tiga hari. Namun, tes MotoGp 2010 akan berlangsung di Sirkuit Sepang, Malaysia, yang akan digelar pada 3-5 Febuari mendatang

    Kamis, 08 Oktober 2009

    Nozzle Injection

    Nozzle Injection Bagian ini menerima bahan bakar bertekanan tinggi dan menginjeksikannya ke dalam ruang pembakaran. Saat tekanan bahan bakar yang dipompakan oleh pompa injeksi menjadi lebih besar daripada beban pegas tekanan, maka tenaganya mendorong jarum nozzle ke atas. Hal ini menyebabkan pegas tekanan menjadi mampat dan bahan bakar diinjeksikan ke ruang pembakaran. Tekanan injeksi dapat disetel dengan cara membedakan ketebalan shim penyetel, yang secara efektif mengubah beban pada pegas. This parts accepts the high pressured fuel and injects it into combustion chamber. When the fuel Pressure pumped by hypodermic pump becomes bigger than burden of spiral spring pressure, its energy will push the needle nozzle to up. This matter causes the spiral spring [of] pressure becomes solid and the fuelis injected to combustion chamber. Hypodermic pressure can be switched on by differentiating thick [of] shim swictch which effectively alters the burden [of] [at] spiral spring 1. Pegas tekanan (Pressure spring) 2. Jarum nozzle 3. Bodi nozzle 4. Shim penyetel 1. Pressure Spring 2. Tail the nozzle 3. Bodi Nozzle 4. Shi

    Sabtu, 13 Juni 2009

    Perawatan Radiator secara Berkala

    Perawatan Radiator secara Berkala Ada beberapa hal yang paling sering memicu kebocoran pada radiator. Yaitu: korosi (karat), benturan (baik karena tabrakan maupun karena terkena kibasan kipas radiator). Khusus untuk bahan fiber, penyebab lainnya adalah panas dan tekanan air radiator. Akibat penyebab-penyebab ini, mungkin saja terbentuk rongga atau celah di plat-plat (fiber) radiator tempat air merembes keluar. Karena radiator bocor, sistem pendingin tidak bekerja dengan baik. Akibatnya, temperatur mesin pun tidak terkontrol dan terjadilah overheating ketika mesin terus dipaksa bekerja tanpa pendinginan. Kita tentu sudah hapal bila mesin mengalami overheating. Karena panas yang melebihi toleransi, mesin mungkin berbunyi tidak normal, kurang bertenaga, boros bahan bakar, bahkan mogok saat dikendarai di tengah jalan. Sayang sekali, kan? Sebelum mengalami masalah-masalah seperti itu, antisipasilah terjadinya kebocoran pada radiator. Pencegahan dapat dilakukan dengan merawat sistem pendingin. Untuk ini, ada beberapa tips yang kami sarankan: 1. Lakukan pemeriksaan air radiator secara rutin pada tangki cadangan. Jika permukaan air di tangki cadangan berada di bawah garis MIN, segera tambahkan. Jika sudah tampak kotor dan tampak keruh, kuras dan ganti dengan air radiator yang baru. 2. Gunakan cairan khusus radiator saat mengisi radiator (coolant). Selain membantu proses pendinginan, di dalam cairan tersebut juga terdapat zat yang dapat mengurangi korosi pada radiator dan mesin. Korosi dan kotoran pada air pendingin sangat tidak baik karena dapat mengganggu proses pendinginan. Kami sarankan untuk menggunakan air coolant yang berjenis ethlylene glycol berkualitas tinggi. 3. Bersihkan kisi-kisi radiator dengan menyemprotkan air pada sirip radiator. 4. Periksa kemungkinan terjadi kebocoran baik pada selang-selang maupun radiator. Kebocoran selang dapat dipantau secara manual dengan melihat ada tidaknya tetesan. Tapi, untuk mengecek kebocoran pada radiator harus menggunakan alat khusus (sst atau special service tools). Radiator motor Anda akan diperiksa dengan alat ini jika datang ke bengkel-bengkel . 5. Kondisi radiator dan kinerja sistem pendingin Anda akan lebih terjaga jika rutin melakukan servis berkala.

    Rabu, 06 Mei 2009

    Cara kerja cvt pada matic

    Banyak siswa yang menanyakan "gmana sih pak cara kerja cvt pada matic tuh? Berikut penjelasan bagaimana cvt bekerja Mungkin banyak siswa smk sekolah lain juga belum mengerti cara kerja dari mesin matik atau CVT(Continuously Varible Transmission) pada sepeda motor. Ternyata lebih sederhana dari mesin konvensional atau mesin bertransmisi. Semua komponen CVT terdapat pada boks CVT atau secara kasat mata bentuknya adalah lengan ayun sebelah kiri motor matik kita, yang terlihat begitu besar dan berat. Disitu terdapat tiga komponen utama yaitu puly depan(Drive Pulley), puly belakang(Driven Pulley) dan v-belt. Puly depan dihubungkan ke crankshaft engine(kruk-as), sedangkan puly belakang dihubungkan ke as-roda. Yang menghubungkan puly depan dan puly belakang adalah v-belt.
    Pada saat stationer atau putaran rendah, puly depan memiliki radius yang kecil dibandingkan dengan puly belakang atau rasio gigi ringan. Seiring dengan bertambahnya putaran mesin (rpm), maka puly depan radiusnya juga ikut membesar sedangkan puly belakang justru mengecil atau sama dengan rasio gigi berat. Untuk kerja v-belt hanya menghubungkan kedua puly tersebut agar dapat berjalan secara bergantian. Jadi saat puly depan membesar maka yang menyebabkan puly belakang mengecil adalah karena desakan dari v-belt, karena panjang v-belt selalu sama pada proses ini. Karena kerja CVT yang linear, maka mesin matik dapat menghasilkan akselerasi yang halus tanpa adanya kehilangan tenaga.

    Rabu, 29 April 2009

    VVT-I Atau VTEC pa sih bedanya????

    di Indonesia mobil–mobil baru banyak menggunakan mesin dengan sistem penggerak katup, VVT-I, VTEC, valvetronik atau vanos. Toyota umumnya menamai mesinya VVT-I. Sedangkan Honda menamainya VTEC. VVT-i Sistim VVT-i (Variable Valve Timing - Intelligent) merupakan serangkaian peranti untuk mengontrol penggerak camshaft. Maksudnya adalah menyesuaikan waktu bukaan katup dengan kondisi mesin. Sehingga bisa didapat torsi optimal di setiap tingkat kecepatan. Sekaligus menghemat bahan bakar dan mengurangi emisi gas buang. Pada mesin Toyota, sistim ini diaplikasikan pada katup masuk. Waktu bukaan camshaft bisa bervariasi pada rentang 60 derajat. Misalnya, pada saat start, kondisi mesin dingin dan mesin stasioner tanpa beban, timing dimundurkan 30 derajat. Cara ini bakal menghilangkan overlap. Yaitu peristiwa membukanya katup masuk dan buang secara bersamaan di akhir langkah pembuangan karena katup masuk baru akan membuka beberapa saat setelah katup buang menutup penuh. Logikanya, pada kondisi ini mesin tak perlu bekerja ekstra. Dengan tertutupnya katup buang, tak ada bahan bakar yang terbuang saat terisap ke ruang bakar. Konsumsi BBM jadi hemat dan mesin lebih ramah lingkungan.Sedangkan saat ada beban, timing akan maju 30 derajat . Derajat overlapping akan meningkat. Tujuannya untuk membantu mendorong gas buang plus memanaskan campuran bahan bakar dan udara yang masuk. Selain itu, waktu kompresi juga bertambah karena katup masuk juga menutup lebih cepat. Efeknya, efisiensi volumetrik jadi lebih baik. Untuk mewujudkannya, ada VVT-i controller pada timing gear di intake camshaft. Alat ini terdiri atas housing (rumah), kemudian di dalamnya ada ruangan oli untuk menggerakkan vane (baling-baling). Baling-baling itu terhubung dengan camshaft. Di dalamnya terdapat dua jalur oli menuju masing-masing ruang oli di dalam rumah VVT-i controller. Dari jalur oli yang berbeda inilah, vane akan mengatur waktu bukaan katup. Posisi advance timing maju didapat dengan mengisi oli ke ruang belakang masing-masing bilah vane. Sehingga vane akan bergerak maju dan posisi timing pun ikut maju 30 derajat. Tekanan olinya sendiri disediakan oleh camshaft timing Oli Control Valve yang diatur oleh ECU mesin. Kebalikannya, untuk kondisi retard (mundur), ruang di depan vane akan terisi dan posisi timing mundur. Sedangkan kalau dibutuhkan pada kondisi standar, ada pin yang akan mengunci posisi vane tetap ada di tengah. Sebenarnya masih ada sistem yang lebih canggih, namanya VVTL-i (Variable Valve Timing Lift-Intelligent). Selain memainkan waktu bukaan katup, tingginya pun ikut dibedakan. VTEC Teknologi canggih Variable Valve Timing and Lift Electronic Controlled (VTEC) hasil inovasi Honda ini menampilkan mekanisme berbeda. Perbedaan utamanya adalah pada pergerakan katup masuknya. Pada mesin 16 valve, terdapat masing-masing dua katup masuk dan buang di tiap silinder. VTEC diaplikasikan hanya pada katup masuk. Pada katup inilah pengontrolan efisiensi mesin lebih berpengaruh. Asumsinya, proses pembuangan tak memerlukan pembukaan katup variabel sebab semakin lancar gas buang, kerja mesin akan semakin enteng. Pada mesin VTEC, kedua katup masuk tak selalu bergerak bareng. Misalnya, di putaran rendah hanya ada satu klep yang membuka. Bukaannya pun relatif kecil karena karakter camshaft yang menonjok katup ini cocok buat putaran rendah. Kondisi ini dinilai pas untuk mesin. Karena pada putaran rendah tak perlu suplai udara banyak. Selain itu, bisa terjadi turbulensi udara untuk membantu mencampur bahan bakar. Mesin jadi irit, efisien, juga ramah lingkungan. Seiring naiknya putaran mesin, kebutuhan suplai udara juga meningkat. Langsung dijawab dengan katup kedua. Bukaannya lebih besar karena nok chamshaft punya karakter derajat lebih tinggi. Asyiknya, katup pertama tadi ikut membuka lebih lebar. Hal ini disebabkan ada pin yang menghubungkan rocker arm dan mendorong pin. Otomatis pin tadi akan mengunci kedua rocker arm. Karena rocker arm kedua digerakkan oleh nok camshaft yang berdurasi lebih tinggi, gerakan katup pertama jadi mengikuti. Selain VTEC ada juga i-VTEC (intelligent VTEC) yang juga dilengkapi mekanisme memajukan dan memundurkan pengapian. Tentu hasilnya lebih maksimal untuk meningkatkan efisiensi mesin.

    DETEKSI CHASIS SEJAK DINI

    'Kaki' Mobil Sehat, Usir Penat!
    Pernahkah Anda merasakan kelelahan yang luar biasa saat Anda melakukan perjalanan jauh dengan mobil Anda? Mungkin mobil Anda mempunyai masalah pada bagian kaki-kakinya, yang tugasnya adalah menopang body mobil dan keseluruhan beban yang harus dibawanya. Dari tugas yang harus ditanggung tersebut, Anda tentunya bisa memahami seberapa vital fungsi dari kaki-kaki mobil Anda. Maka dari itu, sebaiknya Anda perlu memeriksa kondisinya, terutama setelah Anda melakukan perjalanan yang jauh. Ada baiknya Anda memeriksanya sendiri terlebih dahulu, sebelum Anda meyerahkan mobil Anda ke bengkel. Beberapa hal yang perlu diperiksa pada sistem kaki-kaki mobil Anda, setelah perjalanan yang jauh adalah sebagai berikut.1. Rem- Untuk Rem Mobil Model TeromolSetelah Anda melakukan perjalanan yang jauh, periksalah kondisi rem mobil Anda. Caranya cukup mudah, bahkan Anda bisa melakukannya sambil duduk di dalam kabin mobil Anda. Untuk memeriksa ketebalan kanvas rem mobil Anda, lakukanlah dengan bantuan rem tangan. Rem tangan berhubungan dengan rem belakang mobil Anda. Jika Anda akan melakukan pengecekan dengan cara seperti ini, berarti Anda harus mengingat ketinggian tuas saat ditarik sehingga bisa dibandingkan dengan posisi yang sekarang. Tambah tinggi posisi rem tangan, berarti rem tambah tipis. Rem Tangan Semisal, sebelum dipakai perjalanan, saat rem tangan ditarik maksimal terdengar 5 kali bunyi 'klik' mobil sudah dalam keadaan terkunci dan setelah dipakai perjalanan, saat rem tangan ditarik maksimal terdengar bunyi 'klik' hingga lebih dari 5 kali, berarti rem mobil Anda tambah tipis. Sehingga, Anda bisa kembali menyetel kembali jarak rem dengan teromol. - Untuk Rem Mobil Model Cakram Anda perlu membuka ban terlebih dahulu, lalu periksa ketebalan kampas remnya. Jika sudah kurang dari 1 mm, segera ganti dengan yang baru. Pengecekan Shockbreaker2. Shockbreaker Untuk mengeceknya, tekan bodi mobil Anda sekuatnya, lalu lihat pantulannya. Jika 'tendangan balik'-nya berulang-ulang, berarti shockbreaker mobil Anda sudah waktunya diganti. Sama halnya, jika pantulannya lebih tinggi dibandingkan dengan sebelum bodi mobil ditekan. Hal ini sangat perlu penanganan segera dan tidak bisa ditunda lagi. Sehingga Anda harus membawanya ke bengkel mobil terpercaya yang terdekat dan kemudian ganti dengan shockbreaker yang baru. 3. Spooring dan Balancing Khusus untuk spooring dan balancing roda, harus ditangani oleh bengkel yang ahli di bidang itu. Gejala ban yang membutuhkan spooring adalah saat dikendarai, mobil serasa 'melayang' dan antara kemudi dengan roda seolah 'tak kompak' atau 'tak sinkron'. Sehingga, mobil Anda membutuhkan keselarasan roda kiri dan kanan. Begitu pula dengan balancing, perlu ditimbang ulang keseimbangan rodanya. Gejala ketidakseimbangan pada roda adalah saat mobil dipakai pada kecepatan yang tinggi, kemudi terasa bergetar. So, segera periksa sistem kaki-kaki mobil Anda, sekarang juga! (bun)